ATLAS Tile Calorimeter performance to single particles in beam tests

T. Davidek
on behalf of the ATLAS Tilecal collaboration
Outline

- Introduction to ATLAS/Tilecal and the testbeam program
- Tilecal calibration systems
- Event selection, particle separation
- Corrections applied to data
- EM scale determination
- Pion linearity and resolution
- Conclusions
Tile Calorimeter in ATLAS

- **Tile Calorimeter:**
 - iron/scintillator hadronic calorimeter
 - central region of ATLAS detector ($|\eta|<1.6$), 3 cylinders (1xB, 2xEB)
 - segmentation: 3 radial compartments, $\Delta\eta \times \Delta\varphi = 0.1 \times 0.1$ (last layer 0.2×0.1)

- **Tilecal module ($\Delta\varphi=0.1$)**
 - scintillating tiles staggered in depth, placed perpendicular to colliding beams
 - light collected by WLS fibers, routed to PMTs
 - each cell readout by 2 PMTs
Tilecal in beam tests

- Production modules (final mechanics & electronics) tested in particle beams 2000 - 2003
- Results presented here come from re-calibrated data 2002-2003

Tests in SPS H8-beamline:
- energies from 10 - 350 GeV
- muon, electron and hadron beams
- typical setup (module 0, barrel module, 2 EB modules). The tests included:
 - EM scale settings: shooting electrons into individual cells at 20 deg (all cells of first radial compartment)
 - detector performance "as in ATLAS": particles shot at projective pseudorapidities, entering the centers of the cells
 - special studies at 90 deg: uniformity, hadronic shower profiles, light yield measurement, etc.
Tilescal Calibration Systems (1)

- Charge Injection System (see next pages for more details)
- Laser System:
 - inject pulsed laser light into all PMTs
 - monitors PMT non-linearity and stability

- Cesium System (more details in next page)
- Minimum bias system:
 - signal integration over ~10 msec
 - precise monitoring tool, (relative) luminosity measurement
Tilecal Calibration Systems (2)

- **Cesium System:**
 - passes through individual cells & tiles at 90 deg, signal readout through (slow) integrators
 - can reconstruct individual tile responses (amplitude method)
 - gain of all cells is equalized with Cs by setting the high voltage on the individual PMTs
 - primary tool to set up EM scale (using TB experience): pC/GeV
Tilecal Calibration Systems (3)

- **Charge Injection System (CIS):**
 - injects well defined charge into fast bi-gain electronics
 - provides ADC/pC conversion for both gains
 - offline correction for non-linearity in low-gain
 - uncertainty of mean measured response associated with the ADC performance and the calibration uncertainties: <1%

Impact on the jet energy measurement even smaller since more channels will be involved.
Physics Event Selection

- Beam cuts:
 - require a MIP-like signal in upstream beam scintillators, avoid upstream showering and/or double particle events
 - restrict angular spread and impact point with beam chambers, avoid halo particles with potentially bad energies

- Particle selection criteria:
 - muons taken out using total energy criteria
 - e/π separation:
 - exploit average density differences
 - Cherenkov counter info further improves selection for $E_{\text{beam}} \leq 20$ GeV
 - π/p separation:
 - positive beams only (50-180 GeV)
 - use of Cherenkov counter
Corrections applied to raw data

- correct for bad PMTs
- correct for bias introduced by particle separation criteria (e.g. average density)
- particle/Cs correction (see next pages)
- longitudinal leakage correction (see next pages)
- correct for real beam energies (calculated from known settings of magnets & collimators in the beamline)
Particle/Cs correction

- Difference particle/Cs:
 - particles at 90 deg entered the tile center, whereas Cs deposits energy at the tile edge.
 - non-uniform tile response across its surface causes systematic particle/Cs difference.
 - evaluate weights for individual radial compartment:
 - $w(1st) = 1$ (preserve EM scale)
 - $w(2nd) = 1/0.975$
 - $w(3rd) = 1/0.922$

Data from 90 deg muons, similar picture obtained with 90 deg electrons

1 event example: 100 GeV $\pi@\eta=0.35$

x $w(1st)$ x $w(2nd)$ x $w(3rd)$
Longitudinal leakage correction

- Want to compare the results with that of radially longer Tilecal prototype modules => scale resulting pion linearity and resolution for an "infinite" calorimeter
- Correction for peak value and resolution obtained from special 90 deg pion studies

Different calo depths

165 cm ~ production modules, $\eta=0.35$
195 cm ~ prototypes, $\eta=0.35$
Setting the EM scale

- EM scale determined with electrons entering at 20 deg
 - 11% of all Tilecal modules brought to beam tests
 - electrons shot in all cells of the first radial compartment
 - averaged over all tested modules, we got: 1.05 pC/GeV

Final:
Mean = 1.05 ± 0.03 pC/GeV
Rms = 2.4 ± 0.1%
Pion results (1)

• Pion response normalized to the beam energy:
 - data from several modules combined; modules are inter-calibrated with \(\pi \) at 180 GeV
 - calorimeter is non-compensated, data in reasonable match with Wigmans' parametrization
 • \(e/h = 1.36 \), result from earlier Tilecal analyses
 - good agreement data vs. MC

• Comparison to earlier Tilecal prototype modules (+30 cm):

 Production mods (\(L=\infty \)) Prototypes (\(L=\infty \))

 \[R(180 \text{ GeV}/20 \text{ GeV}) \quad 1.059 \pm 0.005 \quad 1.083 \]

 - recent studies in ATLAS combined testbeam show the same value (1.059±0.008)
Pion results (2)

- Pion energy resolution:
 - data from several modules combined:
 \[\frac{\sigma}{E} = (52.7 \pm 0.9)\% \sqrt{E} + (5.7 \pm 0.2)\% \]
 - result in good agreement with resolution obtained for prototype modules when accounting for different calorimeter lengths
Conclusions

- Big effort invested into understanding the details of the Tile calorimeter calibration and response to particles.

- The new calibration, involving also the correction for longitudinal leakage, restores the expected pion response curve as a function of energy.

- Reasonable agreement with recent MC.

- The gained experience should allow us to calibrate all 10k Tilecal channels at EM scale in ATLAS within 1-2%