Feynman diagrams

Lydia Beresford1,* and Jesse Liu2,†

1Department of Physics, University of Oxford, Oxford OX1 3RH, UK
2Department of Physics, University of Chicago, Chicago, IL 60637, USA

(Dated: July 20, 2019)

Some Feynman diagrams made using \texttt{feynmp} for use.

I. INTRODUCTION

Precision measurements of electromagnetic couplings are fundamental tests of quantum electrodynamics (QED) and powerful probes of new physics beyond the Standard Model (BSM). The electron anomalous magnetic moment $a_e = \frac{1}{2}(g_e - 2)$ is among the most precisely measured observables in nature \cite{Odom, Hanneke}. The muon counterpart a_μ is measured to 1 part in 10^7 \cite{Bennett} and reports a longstanding $3 - 4\sigma$ deviation from the SM prediction, which may be a harbinger of new physics.

ACKNOWLEDGMENTS

We thank the hospitality of the LHC Forward and Diffractive Physics Workshop at CERN, where part of this work began. We are grateful to Alan Barr, Lucian Harland-Lang, Larry Lee Jr, Valery Khoze, and Simon Knapen for interesting discussions. LB is supported by St John’s College, Oxford. JL is supported by STFC.

\begin{itemize}
 \item * lydia.beresford@physics.ox.ac.uk
 \item † jesse.liu@physics.ox.ac.uk
\end{itemize}

\begin{thebibliography}{9}
\end{thebibliography}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{Feynman_diagrams.png}
\caption{Exclusive dilepton.}
\end{figure}